Gases - the ideal gas law explained

Chemical compounds in aqueous solutions are fairly easy to handle as their quantities can either be expressed in weight such as grams or kilos, moles perliter (molarity) or moles per kg (molality).

Topic: pKa & Ka
 - -
The basics
 - -

For gases it is a bit more complicated. In order to determine how much gas is present in some air volume, both temperature and pressure must be known.In some cases, not considered here, a factor such as buoyancy also has to be considered. The ideal gas law is frequently used equation (1) relatingpressure (p), volume (V), number of moles (n), the universal gas constant (R) and the temperature in Kelvin (T) to one another.

(1) p . V = n . R . T

Gases that behave according to eq. 1 are called ideal gases. So if (1) is true for a gas, the gas is said to behave ideally. However, gases are notbehaving ideally; they are behaving ideally to a large extent, so in most cases the ideal gas law can be used for routine computations involving gases.In high-pressure situations and at very low temperatures, the ideal gas law should not be used.

To better understand how the ideal gas law is used, some examples have been constructed for consideration:

Topic: Equilibriums
 - -
The pH scale
 - -

Example 1.
In a 1.5 Liter volume, the pressure of Argon(g) is 18000 ppm at 42o Fahrenheit. How many moles of Argon are there in the 1.5 L?

Preliminary consideration: 18000 ppm is 18000/1000000 or 0.018 Atm; R is 0.08206 L.atm.K-1.mol-1and the temperature, 42 degrees Fahrenheit is 5/9*(42+459,67) or 279o Kelvin.
This information is entered into eq.1:
0.018 . 1.5 = n . 0.08206 . 279
To isolate n, the number of moles, we divide this equation by 0.08206 . 279 on both sides of the equation. This yields that the number ofmoles is 0.00179 or 1.179 mmol.

Topic: Ideal Gas Law
 - -
Ionic Strength
 - -

Example 2.
0.01gram of toluene(l) is injected into a 2 L tube at 293o Kelvin. The toluene immediately evaporates. How many atmosphere of tolueneis now in the tube?

Preliminary consideration: The molecular weight of toluene is 92.13 g/mol, so 0.01 g toluene is 0.000109 moles.
This is simple: we divide by V on both sides of eq. 1. The answer is 0.001304 atm.

Web references

An online calculater for the ideal gas law
A short but very precise explanation

pH meter pH strips

pH meter pH strips Background pH meters have been used since 1936 when they were invented by the Danish company Radiometer.In contrast to many other measuring devices pH meters do not measure concentrations, rather they measure activities. Tobe more specific the pH meter does not measure the concentration of hydrogen ions. pH meters are used to ...


Buffers BackgroundAs shortly explained in the section about how to calculate pH in a solution of dissolved NaHCO3 abuffer has the capability of keeping pH within a certain and narrow range even if an excessof hydrogen ions H+ or hydroxide ions OH- are added.In this particular page I will elaborate a bit on why buffers actually have the capabilities ...

pKa and Ka

pKa and Ka Background informationThe Ka value is a value used to describe the tendency of compounds or ions to dissociate. The Ka value is also called the dissociationconstant, the ionisation constant, and the acid constant.Topic: Equilibriums The pH scale The ...

An introduction to Ionic Strength

An introduction to Ionic Strength Background To quantify the effect of inter-ionic interactions, such as molecular attraction and repelling, one has to have a `parameter` describing themagnitude of these forces and how they alter the way certain calculation are done. Topic: Equilibriums The pH s...